
AIM: OoD detector shouldn’t affect inlier model 
& robust for various contexts. 

✦ The re-training methods worsen the in-
distribution segmentation accuracy.  

✦ The training-free methods fail to 
distinguish the hard inliers & outliers. 

✦ Previous methods struggle to generalise 
well across various environments, which is 
a common issue in practice.

Motivation

✦ We introduce Residual Pattern Learning 
to detect anomalies, without impacting 
closed-set segmentation results. 

✦ On top of RPL, we propose Context-
robust Contrastive Learning to detect 
OoD pixels in various environments. 

✦ Our approach achieves SOTA results in 
FS, SMIYC, RoadAnomaly benchmarks. 

Contribution

Methodology Experiments  

Ablation Studies

    

★ Our loss (PE+DS) achieves SOTA in urban context, but perform poorly in country context. 

★ With CoroCL, our model generalises well across all the benchmarks (under various contexts). 

★ RPL is superior to a binary classifier; while the former predict the 
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a). Closed-set Performance (by mIoU)
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Visualisation

anomalies directly, RPL learns to induce the inlier model.

★ RPL doesn’t impact the original segmentation results.
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Tab). PE denotes the positive energy loss, DS denotes the dis-similarity regularisation and CoroCL is for the context-robust contrastive learning.
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