

Residual Pattern Learning for Pixel-wise Out-of-Distribution Detection in Semantic Segmentation

THE UNIVERSITY OF ADELAIDE

Yuyuan Liu^{1*}, Choubo Ding^{1*}, Yu Tian², Guansong Pang³, Vasileios Belagiannis⁴, Ian Reid^{1,5} and Gustavo Carneiro^{1,6} 1. AIML, University of Adelaide 2. Harvard University 3. Singapore Management University 4. University of Erlangen-Nuremberg 5. MBZUAI 6. University of Surrey

Motivation

AIM: OoD detector shouldn't affect inlier model & robust for various contexts.

- ♦ The re-training methods worsen the indistribution segmentation accuracy.
- ♦ The training-free methods fail to distinguish the hard inliers & outliers.
- ♦ Previous methods struggle to generalise well across various environments, which is a common issue in practice.

Methodology ℓ_{in} (eq. 5) ℓ_{out} (eq. 6) ℓ_{CoroCL} (eq. <mark>7</mark>) CoroCL Training

Experiments

a. validation results

	Fishyscapes (validation set)						SMIYC (validation set)						
Methods	Static			L&F			Anomaly			Obstacle			
	FPR ↓	AuPRC ↑	AUROC ↑	FPR ↓	AuPRC ↑	AUROC ↑	FPR↓	AuPRC↑	$F1^* \uparrow$	FPR ↓	AuPRC ↑	$F1^* \uparrow$	
Maximum softmax [16] [baseline]	23.31	26.77	93.14	10.36	40.34	90.82	60.2	40.4	42.6	3.8	43.4	53.7	
Mahalanobis [23] [baseline]	11.7	27.37	96.76	11.24	56.57	96.75	86.4	22.5	31.7	26.1	25.9	27.7	
SML [19] [ICCV'21]	12.14	66.72	97.25	33.49	22.74	94.97	84.13	21.68	28.00	91.31	18.60	28.39	
Synboost [9] [CVPR'21]	25.59	66.44	95.87	31.02	60.58	96.21	30.9	68.8	65.6	2.8	81.4	73.2	
Meta-OoD [4] [ICCV'21]	13.57	72.91	97.56	37.69	41.31	93.06	17.43	80.13	74.3	0.41	94.14	88.4	
DenseHybrid [11] [ECCV'22]	4.17	76.23	99.07	5.09	69.79	99.01	52.65	61.08	53.72	0.71	89.49	81.05	
PEBAL [37] [ECCV'22]	1.52	92.08	99.61	4.76	58.81	98.96	36.74	53.10	57.99	7.92	10.45	22.10	
RPL+CoroCL [Ours]	0.85	92.46	99.73	2.52	70.61	99.39	7.18	88.55	82.90	0.09	96.91	91.75	

b. test results

Methods Static L&F Anomaly Obstacle FPR ↓ AuPRC ↑ FDR ↓ Au9PRC ↑ FDR ↓ <th></th> <th></th> <th>Fishysca</th> <th>pes (test)</th> <th></th> <th></th> <th>SMIY</th> <th colspan="2">Overall</th>			Fishysca	pes (test)			SMIY	Overall			
Resynthesis [28]	Methods	Static		L&F		Anomaly		Obstacle		Overall	
Embedding [2][IJCV'19] 20.25 44.03 30.02 3.55 70.76 37.52 46.38 0.82 41.85 21.4 Synboost [9][CVPR'19] 18.75 72.59 15.79 43.22 61.86 56.44 3.15 71.34 24.89 60.9 Meta-OoD [4][ICCV'21] 8.55 86.55 35.14 29.96 15.00 85.47 0.75 85.07 14.86 71.7 DenseHybrid [11][ECCV'22] 5.51 72.27 6.18 43.90 62.25 42.05 6.02 80.79 19.99 59.7 GMMSeg [25]* [NIPs'22] 15.96 76.02 6.61 55.63 - - - - - - -		FPR ↓	AuPRC↑	FPR ↓	AuPRC ↑	FPR ↓	AuPRC ↑	FPR ↓	AuPRC↑	FPR ↓	$\overline{\text{AuPRC}} \uparrow$
Synboost [9][CVPR'19] 18.75 72.59 15.79 43.22 61.86 56.44 3.15 71.34 24.89 60.9 Meta-OoD [4][ICCV'21] 8.55 86.55 35.14 29.96 15.00 85.47 0.75 85.07 14.86 71.7 DenseHybrid [11][ECCV'22] 5.51 72.27 6.18 43.90 62.25 42.05 6.02 80.79 19.99 59.7 GMMSeg [25]* [NIPs'22] 15.96 76.02 6.61 55.63 - - - - - - -	Resynthesis [28][ICCV'19]	27.13	29.6	48.05	5.70	25.93	52.28	4.70	37.71	26.45	31.32
Meta-OoD [4] _[ICCV'21] 8.55 86.55 35.14 29.96 15.00 85.47 0.75 85.07 14.86 71.7 DenseHybrid [11] _[ECCV'22] 5.51 72.27 6.18 43.90 62.25 42.05 6.02 80.79 19.99 59.7 GMMSeg [25]* [NIPs'22] 15.96 76.02 6.61 55.63 - - - - - - -	Embedding [2][IJCV'19]	20.25	44.03	30.02	3.55	70.76	37.52	46.38	0.82	41.85	21.48
DenseHybrid [11] ECCV'22 5.51 72.27 6.18 43.90 62.25 42.05 6.02 80.79 19.99 59.7 GMMSeg [25]* NIPs'22 15.96 76.02 6.61 55.63	Synboost [9][CVPR'19]	18.75	72.59	15.79	43.22	61.86	56.44	3.15	71.34	24.89	60.90
GMMSeg [25]* [NIPs'22] 15.96 76.02 6.61 55.63	Meta-OoD [4][ICCV'21]	8.55	86.55	35.14	29.96	15.00	85.47	0.75	85.07	14.86	71.76
	DenseHybrid [11][ECCV'22]	5.51	72.27	6.18	43.90	62.25	42.05	6.02	80.79	19.99	59.75
PEBAL [37][BCCV'22] 1.73 92.38 7.58 44.17 40.82 49.14 12.68 4.98 15.70 47.6	GMMSeg [25]* [NIPs'22]	15.96	76.02	6.61	55.63	-	-	-	-	-	-
	PEBAL [37][ECCV'22]	1.73	92.38	7.58	44.17	40.82	49.14	12.68	4.98	15.70	47.67
RPL+CoroCL [Ours] 0.52 95.96 2.27 53.99 11.68 83.49 0.58 85.93 3.76 79.8	RPL+CoroCL [Ours]	0.52	95.96	2.27	53.99	11.68	83.49	0.58	85.93	3.76	79.84

Contribution

- ♦ We introduce Residual Pattern Learning to detect anomalies, without impacting closed-set segmentation results.
- ◆ On top of RPL, we propose Contextrobust Contrastive Learning to detect OoD pixels in various environments.
- ♦ Our approach achieves SOTA results in FS, SMIYC, RoadAnomaly benchmarks.

(A) Freeze

(C) RPL (B) Retraining

Ablation Studies

RoadAnomaly PE DS CoroCL Energy [37] FPR AuPRC **FPR** AuPRC **FPR** AuPRC FPR AuPRC **FPR** AuPRC 5.04 52.10 27.59 2.50 28.63 49.22 86.88 1.57 34.39 6.64 89.08 51.47 28.23 70.18 71.40 52.66 92.36 57.28 30.66 1.30 91.16 3.79 63.72 25.65 93.25 63.02 0.85 92.46 2.52 7.18 70.61 17.74 71.61 29.69 54.31 32.57

- **★** Our loss (PE+DS) achieves SOTA in urban context, but perform poorly in country context.
- With CoroCL, our model generalises well across all the benchmarks (under various contexts).

RPL is superior to a binary classifier; while the former predict the anomalies directly, RPL learns to induce the inlier model.

Visualisation